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Abstract

The	 focus	 of	 the	 search	 for	 extra-terrestrial	 intelligence	 (SETI)	 has	 been	 to	 look
outside	 our	 solar	 system	 at	 radio	 frequencies	 for	 signs	 of	 intelligent	 life.	 Such	 a
strategy	is	consistent	with	current	information	which	suggests	that	it	is	unlikely	that
intelligent	 life	 could	 have	 evolved	 on	 the	 other	 planets	 in	 our	 solar	 system.	 Our
knowledge	to	date	cannot,	however,	rule	out	the	possibility	that	extra-terrestrials	or
their	 probes	 may	 have	 reached	 this	 solar	 system.	 If	 so,	 they	 may	 have	 altered
planetary	 surfaces	 in	 ways	 that	 are	 detectable	 through	 remote	 sensing.	 An
alternative	 strategy	 is	 proposed	 which	 involves	 extending	 SETI	 to	 include	 a
systematic	 search	 for	 anomalous,	 i.e.,	 possible	 non-natural	 objects	 on	 planetary
surfaces.	An	approach	for	detecting	anomalous	objects	in	planetary	imagery	based
on	 the	 fractal	 modeling	 of	 terrain	 is	 described.	 Fractals	 have	 been	 successfully
used	 to	 model	 a	 wide	 range	 of	 physical	 and	 biological	 phenomena,	 including
natural	terrain.	This	success	is	due,	in	part,	to	a	property	of	fractals	known	as	self-
similarity,	i.e.,	 fractals	 look	the	same,	 in	some	sense,	across	a	range	of	scales	or
resolutions.	The	anomaly	detection	technique	described	in	this	paper	 is	based	on
identifying	 areas	 in	 terrain	 that	 lack	 self-similarity.	 Preliminary	 results	 of	 applying
the	technique	to	Viking	orbiter	imagery	suggest	that	certain	objects	on	the	Martian
surface	currently	under	investigation	may	not	be	natural.	
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1.	Introduction

The	search	for	extra-terrestrial	intelligence	at	radio	frequencies	began	with	project
Ozma	 [1]	 and	 has,	 as	 of	 yet,	 produced	 no	 evidence	 for	 their	 existence.	 The
success	 of	 such	 an	 endeavor	 requires	 that:	 1)	 there	 are	 advanced	 technological
civilizations	in	the	galaxy	that	are	either	communicating	with	one	another	or	trying
to	communicate	with	us,	2)	we	are	able	 to	detect	 their	signals,	and	3)	we	will	be
able	to	decipher	the	message	when	we	receive	it.

The	Drake	equation	[2]	has	been	a	starting	point	for	speculating	on	the	number	of
technological	civilizations	in	the	galaxy.	At	one	extreme,	some	say	that	we	are	the
only	advanced	civilization	in	the	galaxy	since	if	 there	were	others	we	would	know
about	them.	This	is	known	as	the	Fermi	Paradox	due	to	a	question	asked	by	Enrico
Fermi	in	the	1940s.	At	the	other	extreme,	others	have	estimated	upwards	of	billions
of	 advanced	 technological	 civilizations	 in	 the	 galaxy.	 Evidence	 in	 favor	 of	 either
extreme	 is	 scarce.	 Estimates	 derived	 from	 the	 Drake	 equation	 depend	 on
parameter	 values	 which	 are	 obviously	 based	 on	 our	 very	 limited	 experience	 in
contacting	extra-terrestrials	(ETs).	Freitas	[3]	argues	that	the	Fermi	Paradox	cannot
be	proven.	In	any	case,	the	consensus	is	that	the	number	of	advanced	civilizations
is	somewhere	in	between	the	two	extremes	and	is	sufficient	to	warrant	some	kind
of	search.	

Many	 believe	 that	 the	 best	 channel	 for	 ET	 communications	 is	 at	 1420	MHz,	 the
frequency	at	which	atomic	hydrogen	radiates	[4].	Even	with	this	as	a	starting	point,
as	 the	bandwidth	of	 spectrum	analyzers	decreases	and	 the	angular	 resolution	of
radiotelescopes	increases,	the	number	of	frequencies	and	directions	that	we	must
search	will	 continue	 to	 increase.	Most	 feel	 that	 the	 lack	of	 success	 is	due	 to	 the
very	limited	portion	of	the	"search	space"	covered	to	date.	Others	believe	that	we
do	not	yet	have	 the	 technology	 to	detect	and	decipher	ET	radio	 transmissions	or
may	be	looking	for	a	signal	that	is	simply	not	there	[5].

An	alternative	strategy	has	been	put	forth	more	recently	that	involves	searching	for
ET	 probes	 or	 artifacts.	 Freitas	 [6]	 has	 proposed	 that	 we	 search	 for	 messenger
probes	 in	 the	vicinity	of	 the	earth.	Based	on	 the	argument	 that	 intelligent	 life	has
the	natural	tendency	to	expand	into	and	occupy	space,	and	requires	raw	materials
to	 support	 such	 expansion,	 e.g.,	 for	 building	 space	 colonies,	 Papagiannis	 [7]
argues	that	if	ETs	are	in	our	solar	system,	they	may	be	in	the	asteroid	belt.	Using
arguments	 similar	 to	 those	 based	 on	 Drake	 equation,	 Foster	 [8]	 estimates
frequencies	 of	 visitations	 by	 ETs	 or	 their	 messenger	 probes	 and	 goes	 on	 to
suggest	 the	 possibility	 that	 past	 encounters	 may	 have	 left	 behind	 artifacts	 or
indirect	evidence	(e.g.,	deranged	planetary	terrain).

This	last	idea	is	the	point	of	departure	for	this	paper,	that	there	may	be	artifacts	that
have	 already	 been	 imaged	 by	 probes	 such	 as	 the	 Viking	 Orbiter.	 For	 example,
there	 has	 been	 considerable	 interest	 recently	 in	 a	 collection	 of	 unusual	 surface
features	in	the	Cydonia	region	of	Mars	[9-12].	Is	there	a	way	to	objectively	assess
these	 and	 other	 surface	 features	 so	 that	 future	 missions	 such	 as	 the	 Mars
Observer	can	gather	more	data?

In	 order	 to	 carry	 out	 an	 objective	 search	 for	 artificial	 features,	 detection	 criteria
must	 be	 established.	 Current	 SETI	 strategies	 have	 been	 criticized	 on
epistemological	 grounds,	 i.e.,	 we	 are	 looking	 for	 what	 we	 think	 is	 out	 there	 [5].
Since	we	do	not	really	know	what	we	are	looking	for,	it	is	not	possible	to	define	in	a
direct	way	what	 is	 "artificial".	However,	one	can	attempt	 to	define	what	 is	natural
and	proceed	to	measure	the	"naturalness"	of	unknown	features.	Artificial	 features
are	then	identified	as	those	farthest	from	"natural"	in	some	sense.

The	 contributions	 of	 this	 paper	 are:	 1)	 to	 attempt	 to	 define	 objective	 criteria	 for
identifying	 possible	 artificial	 objects,	 2)	 to	 describe	 a	 technique	 based	 on	 fractal
geometry	 for	 detecting	 such	 objects,	 3)	 to	 present	 some	 preliminary	 results	 of
applying	the	technique	to	Viking	orbiter	 imagery	 that	suggest	 that	certain	unusual
Martian	 surface	 features	 may	 not	 be	 natural,	 and	 4)	 to	 outline	 a	 strategy	 for
continuing	the	search	as	part	of	on-going	planetary	exploration	programs.

2.	Characterizing	Natural	Landscapes	Using	Fractal	Geometry	

Mandelbrot	 [13]	 has	 defined	 a	 fractal	 as	 an	 object	 whose	 Hausdorff-Besicovitch
dimension	 is	strictly	greater	 than	 its	 topological	dimension.	For	example,	a	fractal
surface	 in	 3-d	 space	 whose	 topological	 dimension	 is	 2	 would	 have	 a	 fractal
dimension	 between	 2	 and	 3.	 Fractals	 have	 been	 shown	 to	 be	 good	 models	 for
diverse	 physical	 and	 biological	 phenomena	 such	 as	 the	 length	 of	 coastlines,
stream	flow	volume,	terrain	surface	area,	volume	of	blood	vessels	and	many	more
[13].	A	reason	is	that	natural	phenomena	often	possess	the	property	of	being	self-
similar	at	different	scales	or	resolutions.	Self-similarity	is	defined	by	the	relation

(1)
M(rX)	=	r	f	(D)M(X)	

where	M(X)	represents	any	measurable	property	of	the	fractal	(e.g.,	surface	area),
X	 represents	a	scale	of	measurement	of	 the	metric	property,	 r	 is	a	scaling	 factor
between	zero	and	one,	and	 	(D)	is	a	simple	function	of	the	fractal	dimension	that
depends	 on	 the	 metric	 property.	 This	 equation	 states	 that	 the	 metric	 property
computed	at	a	 reduced	scale	of	measurement	 is	equivalent	 to	scaling	 the	metric
property	of	 the	 fractal	 at	 the	 original	 scale.	 This	 implies	 that	 the	metric	 property
obeys	a	power	law	function	of	the	scale	of	measurement

(2)
M(	X)	=	KXf(D)	

where	K	is	a	constant.

For	 the	 purpose	 of	modeling	 landscapes,	 a	 class	 of	 statistical	 fractals	 known	 as
fractional	 Brownian	 motion	 [14]	 has	 been	 used	 extensively.	 Fractional	 Brownian
surfaces	may	be	described	by	their	second	order	difference	statistics,

(3)
Var	 	BH	(t	)	-	BH	(t	+	T) 		 	T2	H	

their	surface	area,
(4)

A(r)	 	r	2	-	D	

or	their	power	spectral	density,
(5)

S(	 	) 	1/	 	(1	-2	H	)	

where	D	=	3	-	H	.	Eq.	3	states	that	the	variance	of	the	difference	between	any	two
points	 on	 the	 fractional	 Brownian	 surface	 a	 distance	 T	 apart	 increases	 at	 a
constant	power	of	the	distance	(since	0	<	H	<	1;	Eq.	4	states	that	the	surface	area
decreases	as	a	constant	power	of	the	scale	(since	2	<	D	<	3);	Eq.	5	states	that	the
power	spectral	density	(power	per	unit	frequency)	varies	as	a	power	of	 the	spatial
frequency.

Mark	 and	 Aronson	 [15]	 analyzed	 17	 topographic	 data	 sets	 in	 the	 United	 States
using	 variograms	which	 plot	 variance	 versus	 distance	 as	 defined	 in	 Eq.	 3.	 They
found	that	most	of	the	data	sets	could	not	adequately	be	characterized	by	a	single
fractal	dimension,	i.e.,	the	logarithm	of	the	variance	was	not	linearly	related	to	the
logarithm	 of	 the	 distance	 over	 all	 distances	 or	 scales.	 Rather,	 the	 behavior	 of
topography	 tended	 to	be	divided	 into	scale	 ranges.	Over	small	scales	 (<	0.6	km)
many	 of	 the	 surfaces	 could	 be	 modeled	 as	 fractional	 Brownian	 surfaces	 with	D
around	2.2	 -	 2.3.	Over	 larger	 scales,	higher	dimensions	around	2.75	were	noted
while	at	still	larger	scales	many	surfaces	exhibited	periodicities.	A	similar	result	was
noted	by	Clarke	 [16]	who	suggests	 that	a	 combination	of	 fractals,	 to	model	 local
behavior,	 and	 Fourier	 methods,	 to	 model	 longer-term	 variations,	 be	 used	 to
describe	 topography.	 Locally,	 at	 least,	 fractals	 seem	 to	 be	 good	 models	 for
topography.	Clarke	goes	on	to	suggest	that	on	planets	like	Mars	where	the	types	of
processes	 that	 shape	 terrain	 over	 larger	 scales	 on	 Earth	 are	 for	 the	 most	 part
absent,	 fractals	 may	 be	 adequate	 by	 themselves.	 For	 example,	 Woronow	 [17]
shows	that	fractals	can	be	used	for	classifying	certain	kinds	of	large	scale	Martian
impact	craters.

The	above	suggests	a	reason	why	the	generation	of	realistic	synthetic	terrain	using
fractional	Brownian	motion	has	been	so	successful	as	demonstrated	by	Voss	[18]
and	by	Fournier	et	al	[19].	Fig.	1	is	a	3-d	plot	of	a	synthetic	terrain	surface	(D	=	2.1)
produced	 by	 Voss'	 method	 for	 generating	 fractional	 Brownian	 surfaces	 using
discrete	Fourier	 synthesis.	 The	method	 is	 based	on	passing	 the	discrete	Fourier
transform	 of	 a	 2-d	white	Gaussian	 noise	 field	 through	 a	 linear	 filter	with	 transfer
function	proportional	to	1/	(k	2	+	l2	)4	-	D	where	k	and	l	are	the	spatial	frequencies	in
the	x	 and	y	 directions,	 and	 inverse	 transforming	 the	 result.	Fig.	2	 shows	 several
views	of	this	synthetic	terrain	surface.	A	Lambertian	reflectance	function	was	used
to	first	create	a	shaded	rendition	of	the	terrain	surface	(left).	The	sun	is	south	(solar
azimuth	 	 0	 =	 180°)	 at	 a	 zenith	 angle	 	 0	 =	 45°.	 An	 oblique	 view	 was	 then
generated	by	viewing	the	shaded	rendition	mapped	onto	the	elevation	surface	via
an	oblique	parallel	projection	(right).	The	 image	was	computed	 from	a	view	at	an
azimuth	angle	 	1	=	180°	and	a	zenith	angle	 	1	=	60°.	(Rendering	techniques	are
described	further	in	Appendix	B.)

3.	Detecting	Manmade	Objects

A	major	focus	in	artificial	intelligence	and	machine	vision	has	been	on	the	problem
of	recognizing	instances	of	known	objects	in	imagery	(see,	for	example	Ballard	and
Brown	 [20].)	The	problem	of	 recognizing	an	unknown	object	 as	 an	 instance	of	 a
known	 object	 or	 class	 of	 known	 objects	 involves	 comparing	 features	 of	 the
unknown	object	 that	can	be	computed	 from	 the	available	data	 to	 those	of	known
objects	and	selecting	the	object	with	the	best	match.

The	 problem	 of	 recognizing	 unknown	 or	 unexpected	 objects,	 and	 the	 related
problem	 of	 detecting	 man-made	 objects	 embedded	 in	 natural	 terrain	 are
fundamentally	different.	 One	 possible	 approach	might	 be	 to	 try	 to	 determine	 the
characteristics	that	are	common	to	all	man-made	objects.	For	example,	one	thinks
of	 man-made	 objects	 as	 having	 flat	 surfaces,	 sharp	 boundaries,	 and	 different
brightness	from	the	background.	Unfortunately,	due	to	lighting	conditions,	imaging
geometry,	and	 obscuration,	 the	 strong	 linear	 features	 that	 one	 might	 expect	 are
often	not	there.

An	 alternative	 approach	 based	 on	 modeling	 the	 background	 has	 recently	 been
proposed	by	Stein	[21].	His	approach	does	not	rely	on	an	explicit	model	for	man-
made	 objects	 (e.g.,	 that	 they	 are	 rectangular	 in	 shape	 or	 brighter	 than	 the
background);	rather,	it	is	based	on	the	observation	that	man-made	objects	tend	not
to	be	self-similar	in	structure	and	so	fractals	should	be	poor	models	for	man-made
objects.	 The	 method	 is	 based	 on	 estimating	 the	 fractal	 dimension	 of	 the	 image
intensity	surface	within	a	 rectangular	window	that	 is	about	 the	size	of	 the	objects
one	would	like	to	detect,	along	with	the	error	that	results	from	assuming	fractal	or
self-similar	behavior.	The	technique	used	to	estimate	the	fractal	dimension	involves
computing	 the	 surface	 area	A(r)	 of	 the	 image	 intensity	 surface	 as	 a	 function	 of
scale	r	(see	Appendix	A).	The	metric	properties	of	self-similar	sets	scale	according
to	 a	 power	 law	 as	 noted	 in	 Eq.	 4.	 The	 fractal	 dimension	 of	 the	 image	 intensity
surface	 is	 estimated	 by	 performing	 a	 linear	 regression	 of	 log	 A(r)	 vs.	 logr	 .	 A
measure	of	the	degree	to	which	the	image	intensity	surface	lacks	self-similarity	e	is
estimated	by	summing	the	residuals	of	the	linear	regression	over	scale,	i.e.,

(6)

	

Surfaces	that	are	not	self-similar	will	not	follow	a	power	law	relationship,	hence	the
residuals	in	Eq.	6	will	be	large	and	so	e	will	be	large.

An	entire	 image	 is	processed	by	 repeating	 the	above	process	on	a	pixel-by-pixel
basis	within	a	"sliding	window".	Two	images	are	produced:	one	is	the	local	fractal
dimension	D(x,	y)	 ,	 i.e.,	 the	fractal	dimension	of	 the	portion	of	 the	 image	 intensity
surface	within	the	rectangular	window	centered	at	(x,y);	the	other	is	the	local	fractal
model-fit	 image	 	(x,	y).	Fig.	3	shows	an	 image	of	military	vehicles	embedded	 in
natural	terrain	(a)	along	with	the	computed	fractal	dimension	image	(b)	and	fractal
model	 fit	 error	 image	 (c)	 for	R	 =	 10	 scales	 and	 a	 21	 by	 21	window.	 For	 natural
textures	on	earth,	typical	ranges	can	be	used	for	thresholding	the	fractal	dimension
image	in	order	to	generate	detections.	At	the	upper	end,	terrestrial	observations	by
Mark	and	Aronson	[15]	 indicate	that	 fractal	dimensions	over	short	scales	are	 less
than	about	2.5.	At	the	low

end,	 it	has	been	observed	that	discontinuities	in	the	image	intensity	surface	(e.g.,
due	 to	 shadows,	 object	 boundaries,	 and	 obscuration)	 produce	 fractal	 dimension
estimates	that	are	below	the	topological	dimension.	Thus,	for	detecting	man-made
objects,	regions	whose	fractal	dimension	is	not	greater	than	2.0	and	less	than	2.5
are	considered	anomalous.

The	 fractal	 model	 fit	 is	 another	 independent	 measure	 of	 anomalous	 behavior.
Unfortunately,	 since	 the	 fractal	 model	 fit	 error	 is	 a	 relative	 measure,	 absolute
thresholds	 do	 not	 exist.	 If	 the	 relative	 frequency	 of	 occurrence	 of	 man-made
objects	 is	small	however,	 the	model	fit	 image	can	be	thresholded	at	a	given	false
alarm	rate	 (the	probability	 that	a	man-made	object	may	be	detected	when	one	 is
not	 actually	 present).	 The	 detection	 result	 (d)	 in	 Fig.	 3	 indicates	 possible	 man-
made	objects	where	the	fractal	dimension	is	not	between	2.0	and	2.5,	and	where
the	fractal	model	fit	error	is	greater	than	the	90th	percentile.	Three	of	four	vehicles
have	 been	 detected	 with	 two	 "false	 alarms".	 Lack	 of	 data	 like	 that	 compiled	 by
Mark	and	Aronson	limits	the	use	of	the	fractal	dimension	for	anomaly	detection	on
Mars.	For	the	imagery	processed	in	the	next	section,	the	fractal	dimension	is	used
only	 to	 remove	some	object	and	shadow	boundary	effects	by	eliminating	 regions
whose	fractal	dimension	is	less	than	2.0.	The	unthresholded	fractal	model	fit	error
image	is	used	by	itself	 in	the	remaining	areas	to	 indicate	the	degree	to	which	the
data	lacks	the	self-similar	behavior	of	terrain	on	a	local	basis.

4.	Preliminary	Mars/Viking	Orbiter	Results

Fig.	4	 is	a	mosaic	of	 parts	of	 three	Viking	 frames:	35A72,	35A73,	and	35A74.	A
1280	 by	 1024	 pixel	 area	 is	 shown.	 This	 is	 the	 area	 in	 Cydonia	 that	 is	 currently
under	 investigation	by	a	number	of	 	 individuals	 [9-12].	The	 resolution	 is	about	50
meters	per	pixel	and	the	total	area	shown	is	approximately	3000	sq.	km.

The	 result	 obtained	 by	 applying	 the	 anomaly	 detection	 technique	 to	 the	 imagery
over	this	area	is	shown	in	Fig.	5.	The	image	was	produced	by	combining	the	fractal
dimension	and	model	 fit	 images	as	described	 in	 the	previous	section	and	shows
the	top	four	detections.	R	=	10	scales	and	a	21	by	21	pixel	analysis	window	were
used.	The	analysis	window	 thus	 covers	an	area	about	 1	 sq.	 km	and	 is	 near	 the
upper	 scale	 limit	 for	 self-similarity	 based	 on	 Mark	 and	 Aronson's	 results	 for
terrestrial	landscapes.	The	"face"	[9]	was	found	to	have	the	largest	fractal	model	fit
error	which	 implies	that	 it	 is	 the	 least	natural	object	 in	 this	area.	Close-ups	of	 the
face	are	shown	 in	Fig.	6.	A	 number	 of	 	 objects	 in	 the	 "city"	 [11]	 also	 have	 large
fractal	 model	 fit	 error.	 Close	 ups	 of	 one	 of	 those	 objects,	 the	 "fortress"	 [12]	 are
shown	in	Fig.	7.†

As	was	seen	earlier	 in	 the	example	 in	Fig.	3	 the	object	detection	 technique	may
indicate	 the	presence	of	a	man-made	object	when	 there	 is	 no	 such	object	 (false
alarms)	 and	 may	 fail	 to	 detect	 a	 man-made	 object	 when	 one	 is	 there	 (missed
detections).	In	Figs.	4	and	5,	several	features	which	appear	to	be	natural	seem	to
exhibit	a	certain	degree	of	non-fractal	behavior.	On	 the	other	hand,	several	other
unusual	objects	(e.g.,	the	"cliff"	[11]	and	the	"D&M	pyramid"	[9])	do	not	appear	to	be
anomalous	by	this	technique.

As	for	the	false	alarms,	 it	 is	certainly	possible	for	nature	to	conspire	to	produce	a
structure	that	is	not	self-similar	over	short	scales.	In	fact,	this	has	been	said	of	the
face	and	the	other	nearby	objects	in	Cydonia.	It	is	also	noted	that	there	are	many
features	on	Mars	as	well	as	on	the	earth	that	exhibit	aperiodic	structure	over	short
scales	and	are	therefore	not	locally	fractal.

In	 regard	 to	 the	missed	detections,	 it	was	observed	earlier	 that	 images	of	 fractal
surfaces	are	also	 fractal.	The	converse	 is	not	necessary	 true	however.	 If	 a	man-
made	 object	 is	 illuminated	 so	 that	 its	 3-d	 structure	 does	 not	 induce	 significant
shading	 and	 shadowing	 effects,	 structural	 information	 will	 be	 lost	 in	 the	 image
formation	process.	The	image	of	the	object	will	look	smoother	than	it	really	is	and
will	 thus	 appear	 less	 anomalous.	 In	 other	 words,	 the	 ability	 to	 discriminate
anomalous	 objects	 from	 the	 background	 may	 be	 reduced	 at	 certain	 sun	 and
viewing	 angles.	 This	 is	 illustrated	 in	 Fig.	8	 which	 shows	 two	 images	 of	 the	 face
(Viking	frames	35A72	and	70A13)	and	surrounding	terrain.	In	35A72	where	the	sun
is	more	than	15°	lower	than	in	70A13,	the	ability	to	discriminate	the	face	from	the
background	is	much	greater.

To	 verify	 that	 the	 technique	 does	 not	 detect	 a	 plethora	 of	 natural	 objects,	 it	was
applied	 to	 the	 full	 Viking	 frame	 containing	 the	 above	 objects	 (35A72)	 as	well	 as
three	 other	 nearby	 frames:	 35A70,	 35A71,	 and	 35A73.	 The	 strength	 of	 the
strongest	 detection	 in	 35A72,	 the	 "face",	was	 1.75,	 1.88,	 and	 4.31	 times	greater
than	the	strongest	detections	 in	these	three	other	frames,	respectively.	It	 is	noted
that	 the	 size	 of	 these	 objects	 (1-2	 km)	 precludes	 a	 comparative	 analysis	 of
terrestrial	 analogs	 (e.g.,	 the	 Great	 Pyramid)	 using	 imagery	 such	 as	 Landsat	 or
SPOT.	 It	 is	 also	worth	 noting	 that	 it	would	 be	difficult,	 if	 not	 impossible	 to	 obtain
images	of	 facial	profiles	such	as	 those	carved	on	Mt.	Rushmore	since	 they	were
not	meant	to	be	viewed	from	above.	

Finally,	a	result	from	Viking	frame	70A10	is	presented	that	suggests	that	there	may
be	 other	 objectson	 Mars	 worth	 investigating.	 Fig.	 9	 shows	 a	 512	 by	 512	 pixel
region	from	70A10.	It	is	over	100	km	from	the	Cydonia	region	in	Fig.	4.	Also	shown
in	Fig.	9	 is	 the	 fractal	model	 fit	 error	 image	 obtained	with	 the	 same	 parameters
used	 earlier.	 Ignoring	 the	 bright	 areas	 caused	 by	 periodic	 noise	 in	 the	 data,	 a
strong	anomaly	is	present	over	an	unusual	rectangular	structure	having	a	circular
depression	and	a	tapered	"access	ramp".	Nearby	are	a	pyramidal	object	and	sharp
angular	features	etched	into	the	surrounding	terrain.

5.	Summary

This	paper	has	presented	criteria	 for	 identifying	objects	of	possible	artificial	origin
on	 planetary	 surfaces,	 described	 a	 technique	 based	 on	 fractal	 geometry	 for
detecting	 such	 objects	 in	 planetary	 imagery,	 and	 presented	 some	 preliminary
results	of	applying	the	technique	to	Viking	orbiter	imagery.	The	results	presented	in
this	paper	suggest	there	are	a	number	of	surface	features	on	Mars	that	may	not	be
natural.	Although	it	 is	beyond	the	scope	of	this	paper	to	speculate	on	their	origin,
the	 results	 warrant	 further	 investigation.	 In	 particular,	 higher	 resolution	 imagery
must	 be	 collected	by	 the	planned	U.S.	Mars	Observer.	More	 importantly,	 current
thinking	 in	 the	 SETI	 community	 [22-24]	 needs	 to	 be	 broadened	 to	 include	 a
systematic	search	for	ET	artifacts	in	our	solar	system.	The	criteria	and	techniques
discussed	 in	 this	 paper	 are	 a	 starting	 point	 for	 beginning	 an	 objective	 and
systematic	search	for	ET	artifacts.	It	is	well	within	the	state-of-the-art	to	process	the
current	Viking	orbiter	 imagery	archive	 (about	60,000	 images).	Estimated	costs	of
the	order	of	ten	million	dollars	to	process	existing	planetary	imagery	and	create	an
automated	system	for	screening	future	imagery	is	many	orders	of	magnitude	less
than	some	of	the	more	ambitious	radio	search	projects	that	have	been	proposed.

To	paraphrase	Van	Leeuwenhoek	and	Denton,	perhaps	they	are	not	only	"dancing
in	our	lenses"	but	were,	or	are,	at	our	very	doorstep.
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Appendix	A	-	Object	Detection	Algorithm	

The	 object	 detection	 technique	 [21]	 is	 briefly	 presented	 here	 so	 that	 others	 can
independently	 verify	 the	 results	 presented	 in	 the	 paper.	Given	 an	 image	x(i,	 j)	 a
series	of	grayscale	erosions	and	dilations	are	computed

(A1)

	

where	 	 and	 	 .	 These	 are	 used	 to	 compute	 the
volume	 of	 a	 covering	 of	 the	 image	 intensity	 surface	 as	 a	 function	 of	 the	 scale
parameter

(A2)		
vr	(i,	j)	=	tr	(i,	j)	-	br	(i,	j)	

To	obtain	an	estimate	of	the	surface	area	for	an	m	x	n	rectangular	patch	centered
at	 (i,	 j)	 thecovering	 volume	 at	 each	 pixel	 over	 a	 window	 of	 the	 same	 size	 is
summed	and	divided	by	twice	the	scale	parameter:

(A3)

	

The	fractal	model	is	formally	a	linear	regression	model	relating	the	logarithm	of	the
surface	area	estimates	Ar	(i,	j)	to	the	logarithm	of	the	scale	parameter	r

(A4)
log	Ar	(i,	j)	=[2	-	D(i,	j)]log	r	+	Er	(i,	j)	

where	Er	(i,	j)	 is	the	residual	of	the	linear	fit	at	scale	r	 (i.e.	 the	difference	between
the	actual	value	of	the	logarithm	of	the	surface	area	and	the	value	predicted	by	the
linear	model).	D(i,	j	)	is	the	fractal	dimension	and	is	related	to	the	slope	of	the	linear
regression	of	log	Ar	(i,	j)	onto	log	r	.	The	fractal	model	fit	error	is	the	average	of	the
squared	residuals

(A5)

	

where	R	is	the	number	of	scales.

Appendix	B	-	Image	Formation	Model

The	anomaly	detection	 technique	 tacitly	assumes	 that	 the	self-similar	structure	of
terrain	 is	 preserved	 through	 the	 imaging	 process.	 Pentland	 [22]	 and	 Kube	 and
Pentland	[23]	have	analyzed	the	properties	of	images	of	fractal	surfaces	and	show
that	under	certain	conditions	the	image	of	a	fractal	Brownian	surface	is	also	fractal
Brownian,	and	hence,	self-similar.

The	simplified	model	of	the	image	formation	process	shown	in	Fig.	B1	was	used	to
verify	 experimentally	 that	 images	 of	 fractal	 surfaces	 are	 also	 fractal.	 The	 model
ignores	 atmospheric	 effects	 and	 sensor	 degradation.	 It	 assumes	 a	 single	 point
source	(the	sun),	a	Lambertian	surface	reflectance	function,	constant	albedo,	and
an	imaging	sensor	that	is	far	enough	away	for	a	parallel	projection	to	hold.	These
assumptions	 appear	 to	 be	 reasonable	 over	 small	 areas	 on	 Mars	 under	 limited
illumination	 and	 viewing	 conditions	 [12].	 A	 computational	 model	 of	 the	 image
formation	process	can	be	divided	into	two	parts:	1)	computing	a	shaded	rendition
of	 the	surface,	and,	 2)	 projecting	 the	 shaded	 surface	onto	 the	 focal	 plane	of	 the
imaging	sensor.	

The	 shaded	 rendition	 i(x,	 y)	 is	 related	 to	 the	 elevation	 surface	 z(x,	 y)	 by	 the
reflectance	map	R(	p,	q)	where	the	gradients	p	=	 	z	/	 	x	and	q	=	 	z	/	 	y	are	the
partial	derivatives	of	 the	elevation	 in	 the	x	and	y	directions.	The	 reflectance	map
depends	on	the	reflectance	properties	of	the	surface	and	on	the	position	of	the	sun.
The	 use	 of	 the	 reflectance	 map	 in	 computing	 shaded	 renditions	 of	 terrain	 is
discussed	by	Horn	[24].	The	location	of	the	sun	in	gradient	space	is	(p0	,q0	)	where
p0	=	tan 	0	cos 	0	,	q0	=	tan 	0	sin	 	0	and	 	0	and	 	0	are	 the	azimuth	and	zenith
angles	of	the	sun.

The	reflectance	map	for	a	Lambertian	reflectance	function	is
(B1)

	

Areas	 that	 face	 away	 from	 the	 sun,	 i.e.,	 where	 the	 numerator	 is	 negative	 are
assigned	zero	reflectance.

It	is	assumed	that	the	imaging	sensor	is	far	enough	away	for	a	parallel	projection	to
hold	 [28].	 For	 oblique	 viewing	 along	 the	 x	 axis,	 the	 point	 (x,y)	 is	mapped	 to	 the
point	(	 	)	where

(B2)

	

and	 	1	is	the	zenith	angle	of	the	sensor.	That	is,	the	surface	is	foreshortened	along
the	viewing	direction	(in	this	case	along	the	x	direction).	For	viewing	from	another
azimuth,	 the	surface	 is	simply	rotated	so	 that	 the	 line-of-sight	 is	along	the	 x	 axis.
Since	 for	 	 1	 >	 0,	 obscuration	 can	 occur,	 the	 hidden	 surfaces	 must	 first	 be
removed.	Then,	 the	shaded	 rendition	 i(x,	 y)	 is	mapped	onto	 the	 image	plane	 via
Eq.	B2	and	intermediate	pixel	 locations	are	interpolated	to	obtain	the	projection	 i(

	 )	 .	 Fig.	 B2	 summarizes	 the	 fractal	 properties	 of	 images	 of	 the	 fractional
Brownian	surface	shown	in	Fig.	1.	The	stability	of	the	fractal	dimension	and	model
fit	 error	 over	 a	 wide	 range	 of	 illumination	 and	 viewing	 conditions	 implies	 that
images	of	 natural	 terrain	 are	 also	 fractal.	 It	 does	 not	 imply	 however	 that	 images
containing	man-made	objects	will	not	also	be	self-similar.	For	example,	at	low	solar
zenith	angles	where	shading	effects	are	reduced	it	may	be	difficult	to	discriminate
man-made	objects	 from	 the	natural	 background.	This	 phenomenon	was	noted	 in
Section	4.
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Fig.	 1	 3-d	plot	 of	 synthetic	 terrain	 produced	by	Voss'	method	 for	 generating	 fractional
Brownian	surfaces	(fractal	dimension	=	2.1)

	

Fig.	 2	Orthographic	 view	 of	 shaded	 rendition	 of	 synthetic	 terrain	 (left)	 and	 an	 oblique
parallel	projection	(right).

	

Fig.	3	Detection	of	man-made	objects.	 (a)	Original	 image	 (upper	 left)	 has	 four	military
vehicles	embedded	in	a	complex	natural	background.	(b)	Fractal	dimension	(upper	right)
and	(c)	fractal	model	fit	(lower	left)	images	indicate	that	man-made	objects	are	different
than	the	background.	(d)	Areas	whose	fractal	dimension	is	outside	of	range	2	<	D	<	2.5
and	whose	model	fit	is	greater	than	90%-ile	are	shown	(lower	right).

	

Fig.	 4	Mosaic	 of	 Viking	 orbiter	 frames	 35A72,	 73,	 and	 74.	 Landmarks	 shown	 are	 the
"face",	the	"city",	the	"D&M	pyramid",	and	the	"cliff".

	

Fig.	5	Detection	results	show	four	largest	anomalies	over	the	"face"	and	within	the	"city".

	

Fig.	6	Close	ups	of	the	"face":	down-looking	(left)	and	an	oblique	view	near	ground	level
on	the	sunlit	side	(right).

	

Fig.	7	Close	ups	of	the	"fortress"	within	the	"city":	down-looking	(left)	and	an	oblique	view
looking	into	the	inner	space	(right).

	

Fig.	 8	 Effect	 of	 variable	 illumination	 on	 the	 detection	 of	 anomalous	 features.	 Part	 of
35A72	and	 fractal	model	 fit	 error	 image	 (top	 left	 and	 right).	 Part	 of	 70A13	and	 fractal
model	 fit	error	 image	(bottom	left	and	right).	Note	the	difference	in	the	number	of	false
alarms	between	the	right	top	and	bottom	images.	Square	"rings"	are	caused	by	noise	in
imagery.

	

Fig.	 9	 Analysis	 of	 part	 of	 70A10	 frame	 (top).	 Fractal	 model	 fit	 error	 image	 indicates
strong	anomaly	over	rectangular	feature	with	central	depression	and	v-shaped	opening.
Note	pyramidal	object	and	linear	features	above	and	to	the	right.

Fig.	B1	 Image	 formation	model.	Shaded	rendition	 i(x,y)	 is	a	 function	of	 the	 reflectance
properties	of	 the	surface	and	 the	position	of	 the	 light	source.	An	oblique	view	i(x',y')	 is
generated	by	a	parallel	projection.

	

Fig.	B2	Stability	of	fractal	dimension	and	model	fit	as	a	function	of	sun	zenith	(top)	and
view	zenith(bottom)	angle.

†	Corrected	and	revised	version	of	original	paper	published	in	the	Journal	of	the	British	Interplanetary
Society,	Vol.	43,	pp	209-216,	1990.

†	Descriptive	terms	such	as	the	"city"	and	"fortress"	have	been	used	by	various	investigators	for	the
sake	of	convenience	and	consistency.	They	do	not	imply	an	endorsement	of	particular	interpretations
of	these	objects.
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